The Role of Shewanella oneidensis MR-1 Outer Surface Structures in Extracellular Electron Transfer

نویسندگان

  • Rachida A. Bouhenni
  • Gary J. Vora
  • Justin C. Biffinger
  • Sheetal Shirodkar
  • Ken Brockman
  • Ricky Ray
  • Peter Wu
  • Brandy J. Johnson
  • Eulandria M. Biddle
  • Matthew J. Marshall
  • Lisa A. Fitzgerald
  • Brenda J. Little
  • Jim K. Fredrickson
  • Alexander S. Beliaev
  • Bradley R. Ringeisen
  • Daad A. Saffarini
چکیده

The ability of the metal reducer Shewanella oneidensis MR-1 to generate electricity in microbial fuel cells (MFCs) depends on the activity of a predicted type IV prepilin peptidase; PilD. Analysis of an S. oneidensisMR-1 pilDmutant indicated that it was deficient in pili production (Msh and type IV) and type II secretion (T2S). The requirement for T2S in metal reduction has been previously identified, but the role of pili remains largely unexplored. To define the role of type IV or Msh pili in electron transfer, mutants that lack one or both pilus biogenesis systems were generated and analyzed; a mutant that lacked flagella was also constructed and tested. All mutants were able to reduce insoluble Fe(III) and to generate current in MFCs, in contrast to the T2S mutant that is deficient in both processes. Our results show that loss of metal reduction in a PilD mutant is due to a T2S deficiency, and therefore the absence of c cytochromes from the outer surface of MR-1 cells, and not the loss of pili or flagella. Furthermore, MR-1 mutants deficient in type IV pili or flagella generated more current than the wild type, even though extracellular riboflavin levels were similar in all strains. This enhanced current generating ability is in contrast to a mutant that lacks the outer membrane c cytochromes, MtrC and OmcA. This mutant generated significantly less current than the wild type in an MFC and was unable to reduce Fe(III). These results indicated that although nanofilaments and soluble mediators may play a role in electron transfer, surface exposure of outer membrane c cytochromes was the determining factor in extracellular electron transfer in S. oneidensis MR-1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes

Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type c...

متن کامل

Role of outer-membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR-1.

In an effort to improve the understanding of electron transfer mechanisms at the microbe-mineral interface, Shewanella oneidensis MR-1 mutants with in-frame deletions of outer-membrane cytochromes (OMCs), MtrC and OmcA, were characterized for the ability to reduce ferrihydrite (FH) using a suite of microscopic, spectroscopic, and biochemical techniques. Analysis of purified recombinant proteins...

متن کامل

Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1

In the absence of O(2) and other electron acceptors, the Gram-negative bacterium Shewanella oneidensis MR-1 can use ferric [Fe(III)] (oxy)(hydr)oxide minerals as the terminal electron acceptors for anaerobic respiration. At circumneutral pH and in the absence of strong complexing ligands, Fe(III) oxides are relatively insoluble and thus are external to the bacterial cells. S. oneidensis MR-1 an...

متن کامل

Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1.

Extracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic processes must cross the periplasmic space to reach terminal oxidoreductases found at the cell surf...

متن کامل

Antibody recognition force microscopy shows that outer membrane cytochromes OmcA and MtrC are expressed on the exterior surface of Shewanella oneidensis MR-1.

Antibody recognition force microscopy showed that OmcA and MtrC are expressed on the exterior surface of living Shewanella oneidensis MR-1 cells when Fe(III), including solid-phase hematite (Fe(2)O(3)), was the terminal electron acceptor. OmcA was localized to the interface between the cell and mineral. MtrC displayed a more uniform distribution across the cell surface. Both cytochromes were as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010